Josh Lee Josh Lee
0 Course Enrolled • 0 Course CompletedBiography
Data-Engineer-Associate최신버전시험자료덤프로시험정복하기
Amazon Data-Engineer-Associate인증시험이 이토록 인기가 많으니 우리KoreaDumps에서는 모든 힘을 다하여 여러분이 응시에 도움을 드리겠으며 또 일년무료 업뎃서비스를 제공하며, KoreaDumps 선택으로 여러분은 자신의 꿈과 더 가까워질 수 있습니다. 희망찬 내일을 위하여 KoreaDumps선택은 정답입니다. KoreaDumps선택함으로 당신이 바로 진정한IT인사입니다.
우리KoreaDumps에는 아주 엘리트한 전문가들로 구성된 팀입니다. 우리는 아주 정확하게 또한 아주 신속히Amazon Data-Engineer-Associate관한 자료를 제공하며, 업데이트될경우 또한 아주 빠르게 뉴버전을 여러분한테 보내드립니다. KoreaDumps는 관련업계에서도 우리만의 브랜드이미지를 지니고 있으며 많은 고객들의 찬사를 받았습니다. 현재Amazon Data-Engineer-Associate인증시험패스는 아주 어렵습니다, 하지만 KoreaDumps의 자료로 충분히 시험 패스할 수 있습니다.
>> Data-Engineer-Associate최신버전 시험자료 <<
Data-Engineer-Associate시험대비 최신 덤프자료 & Data-Engineer-Associate유효한 덤프
경쟁율이 치열한 IT업계에서 아무런 목표없이 아무런 희망없이 무미건조한 생활을 하고 계시나요? 다른 사람들이 모두 취득하고 있는 자격증에 관심도 없는 분은 치열한 경쟁속에서 살아남기 어렵습니다. Amazon인증 Data-Engineer-Associate시험패스가 힘들다한들KoreaDumps덤프만 있으면 어려운 시험도 쉬워질수 밖에 없습니다. Amazon인증 Data-Engineer-Associate덤프에 있는 문제만 잘 이해하고 습득하신다면Amazon인증 Data-Engineer-Associate시험을 패스하여 자격증을 취득해 자신의 경쟁율을 업그레이드하여 경쟁시대에서 안전감을 보유할수 있습니다.
최신 AWS Certified Data Engineer Data-Engineer-Associate 무료샘플문제 (Q30-Q35):
질문 # 30
A company receives .csv files that contain physical address data. The data is in columns that have the following names: Door_No, Street_Name, City, and Zip_Code. The company wants to create a single column to store these values in the following format:
Which solution will meet this requirement with the LEAST coding effort?
- A. Use AWS Glue DataBrew to read the files. Use the NEST TO MAP transformation to create the new column.
- B. Use AWS Glue DataBrew to read the files. Use the NEST TO ARRAY transformation to create the new column.
- C. Use AWS Glue DataBrew to read the files. Use the PIVOT transformation to create the new column.
- D. Write a Lambda function in Python to read the files. Use the Python data dictionary type to create the new column.
정답:A
설명:
The NEST TO MAP transformation allows you to combine multiple columns into a single column that contains a JSON object with key-value pairs. This is the easiest way to achieve the desired format for the physical address data, as you can simply select the columns to nest and specify the keys for each column. The NEST TO ARRAY transformation creates a single column that contains an array of values, which is not thesame as the JSON object format. The PIVOT transformation reshapes the data by creating new columns from unique values in a selected column, which is not applicable for this use case. Writing a Lambda function in Python requires more coding effort than using AWS Glue DataBrew, which provides a visual and interactive interface for data transformations. References:
7 most common data preparation transformations in AWS Glue DataBrew (Section: Nesting and unnesting columns) NEST TO MAP - AWS Glue DataBrew (Section: Syntax)
질문 # 31
A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.
When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.
The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.
Which solution will meet these requirements MOST cost-effectively?
- A. Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.
- B. Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.
- C. Reduce the scaling cooldown period for the provisioned EMR cluster.
- D. Increase the maximum number of task nodes for EMR managed scaling to 10.
정답:B
설명:
The company's Apache Spark ETL job on Amazon EMR uses high CPU but low memory, meaning that compute-optimized EC2 instances would be the most cost-effective choice. These instances are designed for high-performance compute applications, where CPU usage is high, but memory needs are minimal, which is exactly the case here.
* Compute Optimized Instances:
* Compute-optimized instances, such as the C5 series, provide a higher ratio of CPU to memory, which is more suitable for jobs with high CPU usage and relatively low memory consumption.
* Switching from general-purpose EC2 instances to compute-optimized instances can reduce costs while improving performance, as these instances are optimized for workloads like Spark jobs that perform a lot of computation.
질문 # 32
A company stores customer data in an Amazon S3 bucket. Multiple teams in the company want to use the customer data for downstream analysis. The company needs to ensure that the teams do not have access to personally identifiable information (PII) about the customers.
Which solution will meet this requirement with LEAST operational overhead?
- A. Use S3 Object Lambda to access the data, and use Amazon Comprehend to detect and remove PII.
- B. Use Amazon Macie to create and run a sensitive data discovery job to detect and remove PII.
- C. Use an AWS Glue DataBrew job to store the PII data in a second S3 bucket. Perform analysis on the data that remains in the original S3 bucket.
- D. Use Amazon Kinesis Data Firehose and Amazon Comprehend to detect and remove PII.
정답:C
설명:
Step 1: Understanding the Data Use Case
The company has data stored in an Amazon S3 bucket and needs to provide teams access for analysis, ensuring that PII data is not included in the analysis. The solution should be simple to implement and maintain, ensuring minimal operational overhead.
Step 2: Why Option D is Correct
Option D (AWS Glue DataBrew) allows you to visually prepare and transform data without needing to write code. By using a DataBrew job, the company can:
Automatically detect and separate PII data from non-PII data.
Store PII data in a second S3 bucket for security, while keeping the original S3 bucket clean for analysis.
This approach keeps operational overhead low by utilizing DataBrew's pre-built transformations and the easy-to-use interface for non-technical users. It also ensures compliance by separating sensitive PII data from the main dataset.
Step 3: Why Other Options Are Not Ideal
Option A (Amazon Macie) is a powerful tool for detecting sensitive data, but Macie doesn't inherently remove or mask PII. You would still need additional steps to clean the data after Macie identifies PII.
Option B (S3 Object Lambda with Amazon Comprehend) introduces more complexity by requiring custom logic at the point of data access. Amazon Comprehend can detect PII, but using S3 Object Lambda to filter data would involve more overhead.
Option C (Kinesis Data Firehose and Comprehend) is more suitable for real-time streaming data use cases rather than batch analysis. Setting up and managing a streaming solution like Kinesis adds unnecessary complexity.
Conclusion:
Using AWS Glue DataBrew provides a low-overhead, no-code solution to detect and separate PII data, ensuring the analysis teams only have access to non-sensitive data. This approach is simple, compliant, and easy to manage compared to other options.
질문 # 33
A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.
The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.
Which solutions will meet these requirements? (Choose two.)
- A. Use Athena partition projection based on the S3 bucket prefix.
- B. Transform the data that is in the S3 bucket to Apache Parquet format.
- C. Bucketthe data based on a column thatthe data have in common in a WHERE clause of the user query
- D. Create an AWS Glue partition index. Enable partition filtering.
- E. Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.
정답:A,D
설명:
The best solutions to resolve the performance bottleneck and reduce Athena query planning time are to create an AWS Glue partition index and enable partition filtering, and to use Athena partition projection based on the S3 bucket prefix.
AWS Glue partition indexes are a feature that allows you to speed up query processing of highly partitioned tables cataloged in AWS Glue Data Catalog. Partition indexes are available for queries in Amazon EMR, Amazon Redshift Spectrum, and AWS Glue ETL jobs. Partition indexes are sublists of partition keys defined in the table. When you create a partition index, you specify a list of partition keys that already exist on a given table. AWS Glue then creates an index for the specified keys and stores it in the Data Catalog. When you run a query that filters on the partition keys, AWS Glue uses the partition index to quickly identify the relevant partitions without scanning the entiretable metadata. This reduces the query planning time and improves the query performance1.
Athena partition projection is a feature that allows you to speed up query processing of highly partitioned tables and automate partition management. In partition projection, Athena calculates partition values and locations using the table properties that you configure directly on your table in AWS Glue. The table properties allow Athena to 'project', or determine, the necessary partition information instead of having to do a more time-consuming metadata lookup in the AWS Glue Data Catalog. Because in-memory operations are often faster than remote operations, partition projection can reduce the runtime of queries against highly partitioned tables. Partition projection also automates partition management because it removes the need to manually create partitions in Athena, AWS Glue, or your external Hive metastore2.
Option B is not the best solution, as bucketing the data based on a column that the data have in common in a WHERE clause of the user query would not reduce the query planning time. Bucketing is a technique that divides data into buckets based on a hash function applied to a column. Bucketing can improve the performance of join queries by reducing the amount of data that needs to be shuffled between nodes. However, bucketing does not affect the partition metadata retrieval, which is the main cause of the performance bottleneck in this scenario3.
Option D is not the best solution, as transforming the data that is in the S3 bucket to Apache Parquet format would not reduce the query planning time. Apache Parquet is a columnar storage format that can improve the performance of analytical queries by reducing the amount of data that needs to be scanned and providing efficient compression and encoding schemes. However, Parquet does not affect the partition metadata retrieval, which is the main cause of the performance bottleneck in this scenario4.
Option E is not the best solution, as using the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects would not reduce the query planning time. S3DistCP is a tool that can copy large amounts of data between Amazon S3 buckets or from HDFS to Amazon S3. S3DistCP can also aggregate smaller files into larger files to improve the performance of sequential access. However, S3DistCP does not affect the partition metadata retrieval, which is the main cause of the performance bottleneck in this scenario5. References:
Improve query performance using AWS Glue partition indexes
Partition projection with Amazon Athena
Bucketing vs Partitioning
Columnar Storage Formats
S3DistCp
AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide
질문 # 34
A data engineer needs to create an AWS Lambda function that converts the format of data from .csv to Apache Parquet. The Lambda function must run only if a user uploads a .csv file to an Amazon S3 bucket.
Which solution will meet these requirements with the LEAST operational overhead?
- A. Create an S3 event notification that has an event type of s3:*. Use a filter rule to generate notifications only when the suffix includes .csv. Set the Amazon Resource Name (ARN) of the Lambda function as the destination for the event notification.
- B. Create an S3 event notification that has an event type of s3:ObjectCreated:*. Use a filter rule to generate notifications only when the suffix includes .csv. Set an Amazon Simple Notification Service (Amazon SNS) topic as the destination for the event notification. Subscribe the Lambda function to the SNS topic.
- C. Create an S3 event notification that has an event type of s3:ObjectTagging:* for objects that have a tag set to .csv. Set the Amazon Resource Name (ARN) of the Lambda function as the destination for the event notification.
- D. Create an S3 event notification that has an event type of s3:ObjectCreated:*. Use a filter rule to generate notifications only when the suffix includes .csv. Set the Amazon Resource Name (ARN) of the Lambda function as the destination for the event notification.
정답:D
설명:
Option A is the correct answer because it meets the requirements with the least operational overhead. Creating an S3 event notification that has an event type of s3:ObjectCreated:* will trigger the Lambda function whenever a new object is created in the S3 bucket. Using a filter rule to generate notifications only when the suffix includes .csv will ensure that the Lambda function only runs for .csv files. Setting the ARN of the Lambda function as the destination for the event notification will directly invoke the Lambda function without any additional steps.
Option B is incorrect because it requires the user to tag the objects with .csv, which adds an extra step and increases the operational overhead.
Option C is incorrect because it uses an event type of s3:*, which will trigger the Lambda function for any S3 event, not just object creation. This could result in unnecessary invocations and increased costs.
Option D is incorrect because it involves creating and subscribing to an SNS topic, which adds an extra layer of complexity and operational overhead.
Reference:
AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide, Chapter 3: Data Ingestion and Transformation, Section 3.2: S3 Event Notifications and Lambda Functions, Pages 67-69 Building Batch Data Analytics Solutions on AWS, Module 4: Data Transformation, Lesson 4.2: AWS Lambda, Pages 4-8 AWS Documentation Overview, AWS Lambda Developer Guide, Working with AWS Lambda Functions, Configuring Function Triggers, Using AWS Lambda with Amazon S3, Pages 1-5
질문 # 35
......
Amazon Data-Engineer-Associate 인증시험 최신버전덤프만 마련하시면Amazon Data-Engineer-Associate시험패스는 바로 눈앞에 있습니다. 주문하시면 바로 사이트에서 pdf파일을 다운받을수 있습니다. Amazon Data-Engineer-Associate 덤프의 pdf버전은 인쇄 가능한 버전이라 공부하기도 편합니다. Amazon Data-Engineer-Associate 덤프샘플문제를 다운받은후 굳게 믿고 주문해보세요. 궁금한 점이 있으시면 온라인서비스나 메일로 상담받으시면 됩니다.
Data-Engineer-Associate시험대비 최신 덤프자료: https://www.koreadumps.com/Data-Engineer-Associate_exam-braindumps.html
Amazon Data-Engineer-Associate최신버전 시험자료 시험불합격시 덤프비용 환불가능하기에 시험준비 고민없이 덤프를 빌려쓰는것이라고 생각하시면 됩니다, KoreaDumps Data-Engineer-Associate시험대비 최신 덤프자료는 여러분의 시간을 절약해드릴 뿐만 아니라 여러분들이 안심하고 응시하여 순조로이 패스할수 있도록 도와주는 사이트입니다, Amazon인증 Data-Engineer-Associate시험을 패스하기 위하여 잠을 설쳐가며 시험준비 공부를 하고 계신 분들은 이 글을 보는 즉시 공부방법이 틀렸구나 하는 생각이 들것입니다, KoreaDumps Data-Engineer-Associate시험대비 최신 덤프자료는 몇년간 최고급 덤프품질로 IT인증덤프제공사이트중에서 손꼽히는 자리에 오게 되었습니다, Amazon Data-Engineer-Associate최신버전 시험자료 그렇다고 자격증공부를 포기하면 자신의 위치를 찾기가 힘들것입니다.
그러니 신부님, 앞으로는 나를 물어요, 말도 안 되는 걸Data-Engineer-Associate최신버전 시험자료로 사람 범인으로 몰고, 괴롭히고 있는 것도, 시험불합격시 덤프비용 환불가능하기에 시험준비 고민없이 덤프를 빌려쓰는것이라고 생각하시면 됩니다, KoreaDumps는 여Data-Engineer-Associate러분의 시간을 절약해드릴 뿐만 아니라 여러분들이 안심하고 응시하여 순조로이 패스할수 있도록 도와주는 사이트입니다.
Data-Engineer-Associate최신버전 시험자료 시험공부
Amazon인증 Data-Engineer-Associate시험을 패스하기 위하여 잠을 설쳐가며 시험준비 공부를 하고 계신 분들은 이 글을 보는 즉시 공부방법이 틀렸구나 하는 생각이 들것입니다, KoreaDumps는 몇년간 최고급 덤프품질로 IT인증덤프제공사이트중에서 손꼽히는 자리에 오게 되었습니다.
그렇다고 자격증공부를 포기하면 자신의 위치를 찾기가 힘들것입니다.
- Data-Engineer-Associate퍼펙트 최신 덤프 🐮 Data-Engineer-Associate덤프샘플문제 🍣 Data-Engineer-Associate덤프샘플문제 🕥 ⇛ www.itexamdump.com ⇚에서 검색만 하면⏩ Data-Engineer-Associate ⏪를 무료로 다운로드할 수 있습니다Data-Engineer-Associate완벽한 시험공부자료
- 완벽한 Data-Engineer-Associate최신버전 시험자료 시험덤프 👯 ☀ www.itdumpskr.com ️☀️의 무료 다운로드➡ Data-Engineer-Associate ️⬅️페이지가 지금 열립니다Data-Engineer-Associate시험대비 덤프데모문제
- 시험패스에 유효한 Data-Engineer-Associate최신버전 시험자료 인증시험덤프데모 🤖 《 www.itcertkr.com 》을(를) 열고⮆ Data-Engineer-Associate ⮄를 검색하여 시험 자료를 무료로 다운로드하십시오Data-Engineer-Associate시험응시료
- Data-Engineer-Associate시험대비 덤프 최신문제 🧅 Data-Engineer-Associate인증시험 인기 덤프문제 🥣 Data-Engineer-Associate인증시험 덤프공부 👔 지금「 www.itdumpskr.com 」에서“ Data-Engineer-Associate ”를 검색하고 무료로 다운로드하세요Data-Engineer-Associate시험대비 최신버전 덤프샘플
- Data-Engineer-Associate덤프샘플문제 🥡 Data-Engineer-Associate완벽한 시험공부자료 ⚒ Data-Engineer-Associate완벽한 공부문제 🖖 ➠ Data-Engineer-Associate 🠰를 무료로 다운로드하려면▶ www.koreadumps.com ◀웹사이트를 입력하세요Data-Engineer-Associate적중율 높은 시험대비덤프
- Data-Engineer-Associate최고합격덤프 🚠 Data-Engineer-Associate퍼펙트 최신 덤프 👩 Data-Engineer-Associate인증시험덤프 ✨ 《 www.itdumpskr.com 》을 통해 쉽게「 Data-Engineer-Associate 」무료 다운로드 받기Data-Engineer-Associate시험대비 최신버전 덤프샘플
- Data-Engineer-Associate최신 업데이트버전 시험자료 ☸ Data-Engineer-Associate적중율 높은 시험대비덤프 🕵 Data-Engineer-Associate최신 업데이트 시험공부자료 🦐 무료로 쉽게 다운로드하려면➽ www.koreadumps.com 🢪에서▶ Data-Engineer-Associate ◀를 검색하세요Data-Engineer-Associate최신 업데이트버전 시험자료
- Data-Engineer-Associate인증시험 덤프공부 ☝ Data-Engineer-Associate최신 업데이트버전 시험자료 🏚 Data-Engineer-Associate유효한 인증덤프 🃏 ⏩ www.itdumpskr.com ⏪웹사이트를 열고➤ Data-Engineer-Associate ⮘를 검색하여 무료 다운로드Data-Engineer-Associate최신 업데이트버전 시험자료
- 높은 통과율 Data-Engineer-Associate최신버전 시험자료 공부자료 🎁 ➡ www.itdumpskr.com ️⬅️을(를) 열고⮆ Data-Engineer-Associate ⮄를 입력하고 무료 다운로드를 받으십시오Data-Engineer-Associate최신 시험덤프자료
- 시험패스에 유효한 Data-Engineer-Associate최신버전 시험자료 인증시험덤프데모 👨 【 www.itdumpskr.com 】에서 검색만 하면▶ Data-Engineer-Associate ◀를 무료로 다운로드할 수 있습니다Data-Engineer-Associate완벽한 시험공부자료
- 시험패스에 유효한 Data-Engineer-Associate최신버전 시험자료 인증시험덤프데모 🧤 오픈 웹 사이트【 www.itcertkr.com 】검색➤ Data-Engineer-Associate ⮘무료 다운로드Data-Engineer-Associate시험대비 덤프데모문제
- Data-Engineer-Associate Exam Questions
- lms.marathijan.com studyzonebd.com www.digitaledgeafrica.co.za 1000vendeurs.academy trading-english.com adt.paulreeve.com.au freemoon.org cobe2go.com ngeehub.com taqaddm.com